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Introduction

Spatial transcriptomics is an emerging technology that enables the
profiling of gene expression while preserving the spatial context of
cells within intact tissue sections. This approach offers
unprecedented insights Iinto tissue architecture and cellular
neighborhoods, which are critical for understanding disease
mechanisms and identifying clinically relevant biomarkers.

Visium HD, the Ilatest high-resolution spatial transcriptomics
platform developed by 10x Genomics, allows for detailed
transcriptome mapping across diverse tissue types. Analyzing such
data requires robust computational tools. Seurat, an R package
originally developed by the Satijja Lab for single-cell RNA-seq
analysis, has been adapted to handle spatial data, including Visium
HD. Best practices in spatial transcriptomics include quality control,
normalization, dimensionality reduction, and clustering—tasks
supported by a growing suite of analytical tools.

In this study, we establish a streamlined, best-practice workflow for
analyzing high-resolution Visium HD data using the Seurat
framework. We apply this pipeline to a human lung adenocarcinoma
dataset, the most prevalent form of non-small cell lung cancer
(NSCLC) in the United States. Our goal is to map tumor and
Immune cell populations within the tumor microenvironment and
highlight the utility of spatial methods for cancer research and
precision medicine.
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Figure 1. Hematoxylin and eosin (H&E)-stained
image of human lung cancer tissue. Visium HD
transcriptomic data were obtained from the 10x
Genomics Data Portal.
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Figure 2. Spot-level

spatial
NAPSA, a canonical gene marker of Tumor Cells
with retained AT2 identity. Though enriched in
Cluster 0, NAPSA is expressed across multiple
clusters (see Fig. 6).
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Figure 5. Dimensionality reduction of Visium HD gene expression data. Roughly 50K spots
were selected using SketchData() to map the full dataset. High-level communities were
identified using FindNeighbors(), and resulting clusters are visualized in UMAP space.

Thirteen major cell classes are highlighted. Clusters of interest are circled in yellow.
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Figure 3. Pre-QC Metrics. 448,109 total spots
were analyzed. Median UMI count per spot: 145.
Median unique gene count per spot: 122. Median
percent mitochondrial content: 3.43%.
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Figure 6. Heatmap of top marker genes for each of
the 13 clusters,
Clusters of interest are circled in blue.

identified using FindAllMarkers().
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Figure 8. Cluster 0: Lung Adenocarcinoma
Tumor Cells with retained AT2-like identity
(yellow, inset). The CEACAMS5 gene marks
their distinct transcriptional profile (red).
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Figure 4. Distribution of percent mitochondrial
gene content per spot. Spots with over 15% mt
gene content are removed (yellow; 2.6% of total
spots). Gray spots are kept for all downstream
analyses (436,463 out of the original dataset).

Figure 7. Spatial distribution of identified
clusters. Distinct tissue architecture emerges
across the section. Clusters of interest are
circled in yellow.
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Figure 9. Cluster 4. SPP1* tumor-associated
macrophages (TAMs) (yellow, inset). The
SPP1 gene is known for producing
Osteopontin (red).
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Figure 10. Cluster 2: Tumor-Infiltrating
Plasma Cells, or TIPCs (yellow, inset). The

JCHAIN gene marks this antibody-producing

subtype (red).

Future Directions

Figure 11. Cluster 8: Endothelial Cells (ECs)
involved in vascular activation or inflammation
(yellow, inset). The AQP1 gene marks this
activated endothelial subtype (red).

Further analysis of cell-cell communication will enhance understanding of tumor-immune crosstalk and therapeutic targets. We plan to apply single-cell
segmentation for precise biomarker mapping and study immune cell topography alongside copy number alteration (CNA)-defined tumor subclones.
These efforts aim to clarify the roles of TAMs and TIPCs in lung adenocarcinoma progression and support development of targeted therapies.

Figure 12. Top Right: Spatial Overlay of

Clusters 0 (Lung Adenocarcinoma highlight
Tumor Cells), Cluster 4 (Tumor S
Associated Macrophages, TAMs) and il

Cluster 2 (Tumor Infiltrating Plasma
Cells, TIPCs). Regions of spatial
proximity and overlap between tumor
and immune cells highlight potential
sites of tumor—immune interaction.
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Bottom Left: Two regions were selected
to examine local cellular composition.
Pie charts indicate the percentage
distribution of individual clusters within
each region. Cell type profiles vary
significantly between regions, reflecting
spatial heterogeneity in the tumor
microenvironment.

Bottom Right: Bar plot showing the
relative spot coverage of the 13 clusters
identified in the dataset (see Fig. 5). 0
Each bar represents the proportion of
total spots assigned to a given cluster,
highlighting differences in abundance 10
across cell populations.
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Conclusion

This study leveraged high-resolution Visium HD spatial
transcriptomics to characterize the cellular architecture of human
lung adenocarcinoma tissue. We identified thirteen distinct
clusters representing tumor cells, immune infiltrates, and stromal
components.

Malignant clusters showed retention of alveolar type 2 (AT2)-like
features, marked by NAPSA and CEACAMS expression, while
tumor-associated macrophages (SPP1* TAMSs) and
tumor-infiltrating plasma cells (TIPCs) were spatially localized
within the tumor microenvironment. Endothelial cells exhibiting
vascular activation were also identified, suggesting ongoing
angiogenic and inflammatory processes.

Our

integration of spatial gene expression with cell-type

annotation reveals complex tissue organization and highlights
molecular markers defining functionally relevant subpopulations.
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